
Overview
Control of the Chronos camera is provided as a REST API, which is a type of web API, involving requests
and responses, not too unlike visiting a web page. You make a request to a resource stored on a server,
and the server responds with the requested information. The protocol used to transport the data is
HTTP. "REST" stands for Representational State Transfer.

The Chronos API provides access to the camera configuration, settings and related data describing the
camera's hardware and available features. The base address of the Chronos API is
http://192.168.12.1/controlwhen accessing the camera via its USB interface. This API provides a set of
endpoints, each with its own unique path.

Note: Use the IP Address specified in the Util -> Network screen when accessing the camera via
Ethernet

Methods
API methods are procedures that may start a procedure or change the camera state. Since these
operations do not fit well into the REST model, they are performed using the HTTP POST method,
with their arguments provided in JSON format as the HTTP POST body.

describe
The describemethod is accessible by the /control/describe endpoint and returns a description of the
available parameters and methods that can be accessed via the Chronos API. This method is used to
generate most of the reference information on this page.

curl http://192.168.12.1/control/describe

{

"cameraMemoryGB": {

"type": "d",

"get": true,

"set": false,

"notifies": false,

"doc": "int: Amount of video memory attached to the FPGA in GiB"

}

...

}

1

http://192.168.12.1/control/describe

Member Description

type D-Bus type signature for the parameter's value.

get truewhen the parameter can be retrieved using the getmethod

set truewhen the parameter can be changed using the setmethod

notifies truewhen changes to the parameter are reported using the notify event

doc Documentation string, explaining the parameter's meaning and function

availableCalls
The availableCallsmethod is accessible by the /control/availableCalls endpoint. This method gets a list
of the methods that can be called via the API.

This method returns a dictionary with an entry for each method that can be called via the API. Each
entry will include a brief string that summarizes the purpose of the API method. Optionally, the entries
may also contain a descriptionwith a more extensive detail, as well as args and returns dictionaries that
list the parameters that the method accepts, and any values that the method returns.

The availableCallsmethod returns a dictionary with the following members:

Return Value Type Description

calls dict A dictionary describing each method that is callable by the API.

availableKeys
The availableKeysmethod is accessible by the /control/availableKeys endpoint. This method gets a list of
the parameters available in the API.

This method returns a dictionary with an entry for each parameter that can be accessed via the API.
Each entry will describe the type of the parameter as a D-Bus signature, a doc string that describes the
function of the parameter, as well get, set, and notify flags that indicate whether the parameter is
read-only, read-write or generates notify events when its value changes.

The dictionary for each key may also include additional details depending on the type of the parameter.
String parameters describing an enumerated type, may include an enum dictionary which maps each of
the acceptable values to a brief docstring describing what that value does.

Dictionary types may include an args dictionary describing what each member of the dictionary does
when it is set in the API, or they may include a returns dictionary describing what each dictionary
member means when it is returned by the API.

Each key may also include a descriptionmember, which provides a detailed multi-line documentation
string. This is intended to provide more detail than may be available in the single-line doc.

2

The availableKeysmethod returns a dictionary with the following members:

Return Value Type Description

keys dict A dictionary describing each parameter in the API.

clearCalibration
The clearCalibrationmethod is accessible by the /control/clearCalibration endpoint. This method
removes user calibration data, returning the camera to its factory state.

When called with no arguments, this removes only the user calibration, allowing the camera to return
to its factory new state. The caller may also specify the removal of factory calibration data, though this is
not recommended unless the user has made a backup of their calibration data first.

The clearCalibrationmethod accepts the following arguments:

Argument Type Description

factory bool,
optional

Also remove factory calibration data. (default: false)

exportCalData
The exportCalDatamethod is accessible by the /control/exportCalData endpoint. This method generates
factory calibration samples and saves them to external storage

This method iterates through the image sensor's internal calibration modes and generates factory
calibration sample data to be processed externally. The calibration data will be saved to a USB thumb
drive, typically mounted at /media/sda1.

After external processing of the calibration samples is complete, the resulting calibration data can be
imported to the camera using the importCalDatamethod.

flushRecording
The flushRecordingmethod is accessible by the /control/flushRecording endpoint. This method flushes
recorded video data frommemory.

Normally when recording video, the camera will overwrite video data only as needed to make room for
new data from the image sensor. This method discards all video data from the video memory so that
the user can start fresh on their next recording.

get
The getmethod is accessible by the /control/get endpoint. This method retrieves parameter values from
the API.

3

The resulting dictionary will contain an element for each parameter that was successfully read from the
API. If any parameters could not be read, they will be included in an error dictionary giving the reasons
that they could not be retrieved.

The getmethod accepts the following arguments:

Argument Type Description

*names string list of parameter names to retrieve from the API.

getResolutionTimingLimits
The getResolutionTimingLimitsmethod is accessible by the /control/getResolutionTimingLimits endpoint.
This method tests the camera ability to support a desired resolution and framerate.

This method checks the sensor's ability to operate at the desired resolution parameters and, if
successful, reports on some of the parameters that would apply if that resolution was configured.

Otherwise, this method will generate an error to indicate that the resolution setting is not supported by
the image sensor.

The getResolutionTimingLimitsmethod accepts the following arguments:

Argument Type Description

bitDepth int,
optional

Desired pixel bit depth to use for image readout. (default: image
sensor maximum)

hOffset int,
optional

Horizontal offset of the image from the right edge of the image
sensor. (default: center the image horizontally)

hRes int Horizontal image resolution, in pixels.

minFrameTime float,
optional

Minimum time period, in seconds between frames, that the
imager sensor will operate at. (default: image sensor minimum)

vOffset int,
optional

Vertical offset of the image from the top edge of the image
sensor. (default: center the image vertically)

vRes int Vertical image resolution, in pixels.

The getResolutionTimingLimitsmethod returns a dictionary with the following members:

Return Value Type Description

cameraMaxFrames int The maximum number of frames that the camera can save at
this resolution and framerate setting.

4

exposureMax int The maximum exposure period in nanoseconds, that the image
sensor can expose a frame for if the framePeriod was set equal to
minFramePeriod.

exposureMin int The minimum exposure period in nanoseconds that the image
sensor can expose a frame for.

minFramePeriod int The minimum frame period, in nanoseconds between frames,
that the image sensor can operate at.

importCalData
The importCalDatamethod is accessible by the /control/importCalData endpoint. This method imports
calibration data that was generated off-camera.

This method looks for any calibration data present on a USB thumb drive, typically mounted at
/media/sda1, and copies the calibration data to the camera's internal filesystem for later use.

This method is used during factory calibration to import calibration data that the camera is not capable
of generating on its own. Typically, the camera will be connected to a test jig to trigger the camera, with
data being acquired using the exportCalDatamethod.

reboot
The rebootmethod is accessible by the /control/reboot endpoint. This method restarts the control API
and/or the camera.

This method allows the user to restart their camera software, and optionally perform a full power cycle
and/or return to factory default settings at the same time.

The rebootmethod accepts the following arguments:

Argument Type Description

power boolean,
optional

When true, the camera will perform a full power cycle.

reload boolean,
optional

When true, the control API and user interfaces will restart
themselves (default: true).

settings boolean,
optional

When true, the user and API settings are removed during the
reboot, returning the camera to its factory default state.

set
The setmethod is accessible by the /control/set endpoint. This method sets parameter values in the
API.

The resulting dictionary will contain an element for each parameter that was successfully set in the API.

5

If any parameters could not be set, they will be included in an error dictionary given the reason that
they could not be set. Typically, this is either because the value given was not valid for the parameter, or
the parameter did not exist.

The setmethod accepts the following arguments:

Argument Type Description

**values dict A dictionary naming each of the parameters to update, and the
to which they should be set.

startCalibration
The startCalibrationmethod is accessible by the /control/startCalibration endpoint. This method begins
one or more calibration procedures at the current settings.

Black calibration takes a sequence of images with the lens cap or shutter closed and averages them to
find the black level of each pixel on the image sensor. This value is then subtracted during playback to
correct for image offset defects.

Analog calibration consists of any automated image sensor calibration that can be performed quickly
and autonomously without any setup from the user (e.g.: no closing of the aperture or calibration jigs).

Factory calibration algorithms may require special test equipment or setups. Factory calibration also
implies that calibration data will be saved, and that conflicting user calibration data will be removed.

The startCalibrationmethod accepts the following arguments:

Argument Type Description

analogCal bool,
optional

Perform autonomous analog calibration of the image sensor.
(default: false)

blackCal bool,
optional

Perform a full black calibration assuming the user has closed the
aperture or lens cap. (default: false)

factory bool,
optional

Whether factory calibration algorithms should be performed.
(default: false)

saveCal bool,
optional

Whether the results of calibration should be saved to the
filesystem for later use. (default: false)

zeroTimeBlackCal bool,
optional

Perform a fast black calibration by reducing the exposure time
and aperture to their minimum values. (default: false)

This method starts an asynchronous process that changes the camera's state and executes in the
background. The results of the startCalibrationmethod will be returned to the user in the complete

event, with a method equal to startCalibration.

6

startFilesave
The startFilesavemethod is accessible by the /control/startFilesave endpoint. This method saves a
region of recorded video to external storage.

Upon calling this method, the video system will switch to the filesave state and begin encoding video
data to the output device. During this procedure, the playbackStart, playbackPosition and playbackLength

parameters will be updated to track the progress of the filesave.

When the file save is completed, the video system will exit the filesave state and revert to whichever
state it was in when the startFilesavemethod was called.

The startFilesavemethod accepts the following arguments:

Argument Type Description

bitrate int,
optional

For compressed formats, this sets the desired bitrate of the
encoded file in bits per second (0.25 bits per pixel per second).

device string
Name of the external storage device where video should be
saved.

filename
string,
optional

Name to give to the video file (or directory for TIFF and DNG
formats).
When omitted, a filename is generated using the current date
and time.

format string Enumerate the output video format.

framerate
int,
optional

For formats with a media container (such as MPEG-4), this
determines the framerate of the encoded media file (default: 60
frames per second).

length int,
optional

The number of frames of video that should be saved (default: all
frames).

start
int,
optional

The frame number in recorded video where the saved video
begins
(default: 0).

startLivedisplay
The startLivedisplaymethod is accessible by the /control/startLivedisplay endpoint. This method
switches the video system into live display mode.

When in live display mode, the camera will replay the active video data being acquired from the image
sensor onto the LCD screen, HDMI port and its RTSP stream. The video stream will monitor for changes
in the video geometry, or hot plug events and may restart and reconfigure itself as necessary to keep
the video data flowing. The showmust go on.

Any video properties that relate to video playback rate and position have no meaning or effect when in
this state.

7

startPlayback
The startPlaybackmethod is accessible by the /control/startPlayback endpoint. This method switches the
video system into playback mode or sets the playback position and rate.

When in playback mode, the camera will replay the captured video on the LCD, HDMI port and its RTSP
stream. The user may configure the starting frame number and the rate at which video is replayed.

The actual video stream replayed by the camera is fixed at either 30 or 60fps, the camera will either skip
or duplicate frames to achieve the requested framerate. For example, setting the framerate to 120fps will
typically play every 2nd frame at 60fps.

The framerate can be either positive for forward playback, or negative to rewind backwards through
video. A value of zero will effectively pause the video on the current frame.

The startPlaybackmethod accepts the following arguments:

Argument Type Description

framerate int The rate, in frames per second, at which video should advance
through the playback memory.

loopcount int,
optional

The number of frames, after which the video system should
return to position and continue playback. This allows the user to
select a subset of the video to play.

position int The starting frame number from which video should play.

startRecording
The startRecordingmethod is accessible by the /control/startRecording endpoint. This method programs
the recording sequencer and starts recording.

The startRecordingmethod accepts the following arguments:

Argument Type Description

recMode RecModes,
optional

Override the current recMode property when starting the
recording.

This method starts an asynchronous process that changes the camera's state and executes in the
background. The results of the startRecordingmethod will be returned to the user in the complete event,
with a method equal to startRecording.

startWhiteBalance
The startWhiteBalancemethod is accessible by the /control/startWhiteBalance endpoint. This method
begins the white balance procedure.

8

Take a white reference sample from the live video stream and compute the white balance coefficients
for the current lighting conditions. If successful, the results of the white balance calculation will be
stored in wbCustomColor and wbTemperaturewill be set to OK.

The startWhiteBalancemethod accepts the following arguments:

Argument Type Description

hStart int,
optional

Horizontal position at which the white reference should be taken.

vStart int,
optional

Vertical position at which the white reference should be taken.

This method starts an asynchronous process that changes the camera's state and executes in the
background. The results of the startWhiteBalancemethod will be returned to the user in the complete

event, with a method equal to startWhiteBalance.

stopFilesave
The stopFilesavemethod is accessible by the /control/stopFilesave endpoint. This method terminates an
ongoing file save operation

When the video system has started a file save operation, it can take a very long time to complete
depending on the quantity of footage being saved, and the speed of media to which it is being written.

If an operation was started in error, or the user changes their mind, then this method may be used to
terminate that operation rather than waiting for it to complete.

It is acceptable to call this method even when no file save operation is in progress, however, it may
result in an otherwise unexpected restart of the video system.

stopRecording
The stopRecordingmethod is accessible by the /control/stopRecording endpoint. This method terminates a
recording if one is in progress.

Events
With server-sent-events it is possible for the camera to send asynchronous notifications when long
running operations complete, or parameters change in the API. This is done by pushing events to the
web browser.

Using JavaScript, a browser can subscribe to the HTML5 Server-Sent-Events stream by creating a new
EventSource on the /control/subscribe endpoint, and then using the addEventListener function to receive
events.

function onNotifyEvent(data) {

document.getElementById("result").innerText = JSON.parse(data);

}

9

var evtSource = new EventSource("/control/subscribe");

evtSource.addEventListener("notify", function(event) {

onNotifyEvent(event.data);
});

notify
The notify event is generated whenever a mutable parameter in the API changes its value, and the data
sent with the event will contain a dictionary of the updated parameter values.

curl http://192.168.12.1/control/subscribe

event: notify

data: {

data: "calSuggested": false,

data: "state": "analogcal"

data: }

complete
The complete event is generated whenever an asynchronous procedure has run to completion and will
contain the results of the procedure.

If the procedure is completed successfully then the data will contain a dictionary with the name of the
method completed, and the new state of the camera.

If the procedure is completed with an error, then the dictionary will also contain an errorwith the type
of error that occurred, and optionally a messagewith a human-readable description of the error.

curl http://192.168.12.1/control/subscribe

event: complete

data: {

data: "state": "idle",

data: "method": "startWhiteBalance",

data: "error": "SignalClippingError",

data: "message": "Signal clipping, reference image is too bright for white balance"
data: }

Member Description

state The new state of the camera after completing the asynchronous call

method The name of the asynchronous API call that has completed

error A canonical name for an error that occurred during the asynchronous call (optional)

10

http://192.168.12.1/control/subscribe
http://192.168.12.1/control/subscribe

JavaScript

JavaScript

message A human-readable string describing the cause of the error

Parameters
The Chronos API exposes a set of parameters that are accessible using a REST API. Parameters are
accessed via standard HTTP requests in JSON format, and where possible the Chronos API uses
appropriate verbs for each action:

Verb Endpoint Action

GET /control/p/{name} Retrieve a single parameter by name if get is true.

PUT /control/p/{name} Set the value of a single parameter by name if the set flag is true.

POST /control/p Update a collection of parameters together

backlightEnabled
Type: Boolean

Get: true
Set: true
Notifies: true

True if the LCD on the back of the camera is lit. Can be set to False to dim the screen and save a small
amount of power.

true

batteryChargeNormalized
Type: Double

Get: true
Set: false
Notifies: false

Estimated battery charge, with 0.0 being depleted and 1.0 being fully charged.

1

11

JavaScript

JavaScript

JavaScript

batteryChargePercent
Type: Integer

Get: true
Set: false
Notifies: false

Estimated battery charge, with 0% being depleted and 100% being fully charged.

100

batteryCritical
Type: Boolean

Get: true
Set: false
Notifies: true

True when the battery voltage is critically low and a powerdown is imminent

false

batteryPresent
Type: Boolean

Get: true
Set: false
Notifies: true

True when the battery is installed, and False when the camera is only running on adaptor power

true

batteryVoltage
Type: Double

12

JavaScript

JavaScript

JavaScript

Get: true
Set: false
Notifies: false

The voltage that is currently being output by the battery. A fully charged battery outputs between 12V
and 12.5V.

12.225

calSuggested
Type: Boolean

Get: true
Set: false
Notifies: true

True when the calibration of the camera needs updating.

false

cameraApiVersion
Type: String

Get: true
Set: false
Notifies: false

Version string of the chronos module

"0.7.0"

cameraDescription
Type: String

Get: true
Set: true
Notifies: true

13

JavaScript

JavaScript

JavaScript

Descriptive string assigned by the user

"Chronos SN:00000"

cameraFpgaVersion
Type: String

Get: true
Set: false
Notifies: false

Version string of the FPGA bitstream that is currently running

"3.24"

cameraIdNumber
Type: Integer

Get: true
Set: true
Notifies: true

Unique camera number assigned by the user

0

cameraMaxFrames
Type: Integer

Get: true
Set: false
Notifies: true

The maximum number of frames the camera's memory can save at the current resolution.

14

JavaScript

JavaScript

JavaScript

JavaScript

11038

cameraMemoryGB
Type: Double

Get: true
Set: false
Notifies: false

Amount of video memory attached to the FPGA in GiB

32

cameraModel
Type: String

Get: true
Set: false
Notifies: false

Camera model name

"CR21-1.0"

cameraSerial
Type: String

Get: true
Set: false
Notifies: false

Unique camera serial number

"00000"

15

JavaScript

JavaScript

cameraTallyMode
Type: String

Get: true
Set: true
Notifies: true

Mode in which the recording LEDs should operate.

"auto"

colorMatrix
Type: Array of Doubles

Get: true
Set: true
Notifies: true

The matrix coefficients for a 3x3 color matrix converting the image sensor color space into sRGB. The
values are stored in row-scan order.

[
2.20679,
-0.863281,
-0.239258,
-0.375488,
1.63477,
-0.271973,
0.0136719,
-0.911377,
1.72046

]

config
Type: Dictionary

Get: true
Set: false
Notifies: false

16

JavaScript

Return a configuration dictionary of all saveable parameters

{
"recSegments": 5,
"recMode": "normal",
"ioMappingToggleSet": {

"source": "none",
"debounce": false,
"invert": false

},
"ioThresholdIo2": 2.50271,
"ioMappingCombOr2": {

"source": "none",
"debounce": false,
"invert": false

},
"ioMappingCombOr3": {

"source": "none",
"debounce": false,
"invert": false

},
"ioMappingStopRec": {

"source": "none",
"debounce": false,
"invert": false

},
"recTrigDelay": 0,
"ioMappingGate": {

"source": "none",
"debounce": false,
"invert": false

},
"ioMappingCombOr1": {

"source": "none",
"debounce": false,
"invert": false

},
"exposureMode": "normal",
"ioMappingCombXor": {

"source": "none",
"debounce": false,
"invert": false

},
"ioThresholdIo1": 2.50271,
"currentGain": 1.07143,

17

"recPreBurst": 1,
"ioMappingToggleFlip": {

"source": "none",
"debounce": false,
"invert": false

},
"ioDelayTime": 0,
"cameraDescription": "Chronos SN:00000",
"wbCustomColor": [

1.25822,
1,
1.10377

],
"miscScratchPad": {

"empty": 1
},
"ioMappingStartRec": {

"source": "none",
"debounce": false,
"invert": false

},
"ioMappingIo2": {

"source": "alwaysHigh",
"drive": 0,
"debounce": true,
"invert": true

},
"ioMappingIo1": {

"source": "alwaysHigh",
"drive": 0,
"debounce": true,
"invert": true

},
"colorMatrix": [

2.20679,
-0.863281,
-0.239258,
-0.375488,
1.63477,
-0.271973,
0.0136719,
-0.911377,
1.72046

],

18

"ioMappingTrigger": {
"source": "io1",
"debounce": true,
"invert": true

},
"disableRingBuffer": 0,
"ioMappingDelay": {

"source": "comb",
"debounce": false,
"invert": false

},
"resolution": {

"bitDepth": 12,
"vOffset": 0,
"vRes": 1080,
"minFrameTime": 0.000999893,
"hOffset": 0,
"hRes": 1920,
"vDarkRows": 0

},
"recMaxFrames": 11038,
"wbTemperature": 0,
"ioMappingToggleClear": {

"source": "none",
"debounce": false,
"invert": false

},
"ioMappingCombAnd": {

"source": "alwaysHigh",
"debounce": false,
"invert": false

},
"cameraIdNumber": 0,
"cameraTallyMode": "auto",
"exposurePeriod": 500950,
"digitalGain": 1,
"ioMappingShutter": {

"source": "none",
"debounce": false,
"invert": false

},
"framePeriod": 999893

}

19

JavaScript

JavaScript

JavaScript

currentGain
Type: Double

Get: true
Set: true
Notifies: true

The current gain of the image sensor as a linear multiplier of sensorIso.

1.07143

currentIso
Type: Double

Get: true
Set: true
Notifies: false

The ISO number of the image sensor at the current current gain.

621.429

dateTime
Type: String

Get: true
Set: false
Notifies: false

The current date and time in ISO-8601 format.

"2023-09-25T10:42:43.294041"

digitalGain
Type: Double

20

JavaScript

JavaScript

JavaScript

Get: true
Set: true
Notifies: true

Digital image gain applied during video processing.

1

disableRingBuffer
Type: Integer

Get: true
Set: true
Notifies: false

When true, the camera will stop recording once the RAM buffer is full instead of looping over.

0

exposureMax
Type: Integer

Get: true
Set: false
Notifies: true

The maximum possible time, in nanoseconds, that the image sensor is capable of exposing

993226

exposureMin
Type: Integer

Get: true
Set: false
Notifies: true

21

JavaScript

JavaScript

JavaScript

The minimum possible time, in nanoseconds, that the image sensor is capable of exposing

1000

exposureMode
Type: String

Get: true
Set: true
Notifies: true

Mode in which frame timing and exposure should operate.

"normal"

exposureNormalized
Type: Double

Get: true
Set: true
Notifies: false

The current exposure time rescaled between exposureMin and exposureMax. This value is 0 when
exposure is at minimum, and increases linearly until exposure is at maximum, when it is 1.0.

0.503877

exposurePercent
Type: Double

Get: true
Set: true
Notifies: false

The current exposure time rescaled between exposureMin and exposureMax. This value is 0% when
exposure is at minimum, and increases linearly until exposure is at maximum, when it is 100%.

22

JavaScript

JavaScript

JavaScript

50.3877

exposurePeriod
Type: Integer

Get: true
Set: true
Notifies: true

Minimum period, in nanoseconds, that the image sensor is currently exposing frames for.

500950

externalPower
Type: Boolean

Get: true
Set: false
Notifies: true

True when the AC adaptor is present, and False when on battery power.

true

externalStorage
Type: Dictionary

Get: true
Set: false
Notifies: false

The currently attached external storage partitions and their status. The sizes of the reported storage
devices are in units of kB.

23

JavaScript

JavaScript

JavaScript

{
"mmcblk1p1": {

"device": "/dev/mmcblk1p1",
"description": "MMC/SD Card Partiton 1",
"mount": "/media/mmcblk1p1",
"fstype": "vfat"

},
"sda1": {

"device": "/dev/sda1",
"description": "ATA TEAM T253X2001T Partiton 1",
"mount": "/media/sda1",
"fstype": "vfat"

}
}

fanOverride
Type: Double

Get: true
Set: true
Notifies: true

Fan speed in the range of 0=off to 1.0=full, or -1 for automatic fan control.

-1

focusPeakingColor
Type: String

Get: true
Set: true
Notifies: true

The color to display when focus peaking detects a sharp edge.

"cyan"

24

JavaScript

JavaScript

JavaScript

focusPeakingLevel
Type: Double

Get: true
Set: true
Notifies: true

Edge sensitivity at which focus peaking is detected, with 0.0 disabling focus peaking and 1.0 for
maximum sensitivity.

0

framePeriod
Type: Integer

Get: true
Set: true
Notifies: true

The time, in nanoseconds, to record a single frame.

999893

frameRate
Type: Double

Get: true
Set: true
Notifies: false

The estimated recording rate in frames per second (reciprocal of framePeriod).

1000.11

ioDelayTime
Type: Double
25

JavaScript

JavaScript

Get: true
Set: true
Notifies: true

Delay time, in seconds, for the programmable delay block

0

ioDetailedStatus
Type: Dictionary

Get: true
Set: false
Notifies: false

Detailed status of the IO block.

● detailedComb: Dictionary of booleans showing the internal state of the combinatorial logic
block.

● edgeTimers: Dictionary containing the time in clock cycles since the last rising and falling edges
were measured for each output signal.

● output: Dictionary of booleans showing the state of all the output signals from the IO block.

● sources: The contents of the ioSourceStatus parameter.

{
"outputs": {

"gate": false,
"delay": false,
"start": false,
"comb": false,
"shutter": false,
"toggle": false,
"stop": false,
"io1": false,
"io2": false

},
"edgeTimers": {

"shutter": {
"rising": 42.9497,

26

"falling": 42.9497
},
"interrupt": {

"rising": 42.9497,
"falling": 42.9497

},
"stop": {

"rising": 42.9497,
"falling": 42.9497

},
"io1": {

"rising": 42.9497,
"falling": 42.9497

},
"toggle": {

"rising": 42.9497,
"falling": 42.9497

},
"start": {

"rising": 42.9497,
"falling": 42.9497

},
"io2": {

"rising": 42.9497,
"falling": 42.9497

}
},
"detailedComb": {

"or1": false,
"or2": false,
"or3": false,
"xor": false,
"and": true

},
"sources": {

"io3": false,
"nextSeg": false,
"delay": false,
"timingIo": true,
"dispFrame": false,
"alwaysHigh": true,
"comb": false,
"none": false,
"shutter": true,

27

JavaScript

"toggle": false,
"endRec": false,
"io1": false,
"recording": false,
"software": false,
"startRec": false,
"io2": false

}
}

ioMapping
Type: Dictionary

Get: true
Set: true
Notifies: false

Legacy interface to the IO block.

{
"combAnd": {

"source": "alwaysHigh",
"debounce": false,
"invert": false

},
"toggleSet": {

"source": "none",
"debounce": false,
"invert": false

},
"delay": {

"source": "comb",
"delayTime": 0,
"debounce": false,
"invert": false

},
"gate": {

"source": "none",
"debounce": false,
"invert": false

},

28

"toggleFlip": {
"source": "none",
"debounce": false,
"invert": false

},
"start": {

"source": "none",
"debounce": false,
"invert": false

},
"shutter": {

"shutterTriggersFrame": false,
"source": "none",
"debounce": false,
"invert": false

},
"combXOr": {

"source": "none",
"debounce": false,
"invert": false

},
"combOr2": {

"source": "none",
"debounce": false,
"invert": false

},
"combOr3": {

"source": "none",
"debounce": false,
"invert": false

},
"combOr1": {

"source": "none",
"debounce": false,
"invert": false

},
"toggleClear": {

"source": "none",
"debounce": false,
"invert": false

},
"stop": {

"source": "none",
"debounce": false,

29

JavaScript

"invert": false
},
"trigger": {

"source": "io1",
"debounce": true,
"invert": true

},
"io1In": {

"threshold": 2.50271
},
"io2In": {

"threshold": 2.50271
},
"io1": {

"source": "alwaysHigh",
"driveStrength": 0,
"debounce": true,
"invert": true

},
"io2": {

"source": "alwaysHigh",
"driveStrength": 0,
"debounce": true,
"invert": true

}
}

ioMappingCombAnd
Type: Dictionary

Get: true
Set: true
Notifies: true

Combinatorial block AND input configuration

{
"source": "alwaysHigh",
"debounce": false,
"invert": false

}

30

JavaScript

JavaScript

ioMappingCombOr1
Type: Dictionary

Get: true
Set: true
Notifies: true

Combinatorial block OR input 1 configuration

{
"source": "none",
"debounce": false,
"invert": false

}

ioMappingCombOr2
Type: Dictionary

Get: true
Set: true
Notifies: true

Combinatorial block OR input 2 configuration

{
"source": "none",
"debounce": false,
"invert": false

}

ioMappingCombOr3
Type: Dictionary

Get: true
Set: true
Notifies: true

Combinatorial block OR input 3 configuration

31

JavaScript

JavaScript

JavaScript

{
"source": "none",
"debounce": false,
"invert": false

}

ioMappingCombXor
Type: Dictionary

Get: true
Set: true
Notifies: true

Combinatorial block XOR input configuration

{
"source": "none",
"debounce": false,
"invert": false

}

ioMappingDelay
Type: Dictionary

Get: true
Set: true
Notifies: true

Programmable delay block input configuration

{
"source": "comb",
"debounce": false,
"invert": false

}

ioMappingGate
32

JavaScript

JavaScript

Type: Dictionary

Get: true
Set: true
Notifies: true

Gate input signal configuration

{
"source": "none",
"debounce": false,
"invert": false

}

ioMappingIo1
Type: Dictionary

Get: true
Set: true
Notifies: true

Output driver 1 configuration

{
"source": "alwaysHigh",
"drive": 0,
"debounce": true,
"invert": true

}

ioMappingIo2
Type: Dictionary

Get: true
Set: true
Notifies: true

Output driver 2 configuration

33

JavaScript

JavaScript

JavaScript

{
"source": "alwaysHigh",
"drive": 0,
"debounce": true,
"invert": true

}

ioMappingShutter
Type: Dictionary

Get: true
Set: true
Notifies: true

Timing block shutter control signal configuration

{
"source": "none",
"debounce": false,
"invert": false

}

ioMappingStartRec
Type: Dictionary

Get: true
Set: true
Notifies: true

Recording start signal configuration

{
"source": "none",
"debounce": false,
"invert": false

}

34

JavaScript

JavaScript

ioMappingStopRec
Type: Dictionary

Get: true
Set: true
Notifies: true

Recording stop signal configuration

{
"source": "none",
"debounce": false,
"invert": false

}

ioMappingToggleClear
Type: Dictionary

Get: true
Set: true
Notifies: true

Toggle/flip-flop block CLEAR input configuration

{
"source": "none",
"debounce": false,
"invert": false

}

ioMappingToggleFlip
Type: Dictionary

Get: true
Set: true
Notifies: true

Toggle/flip-flop block FLIP input configuration

35

JavaScript

JavaScript

JavaScript

{
"source": "none",
"debounce": false,
"invert": false

}

ioMappingToggleSet
Type: Dictionary

Get: true
Set: true
Notifies: true

Toggle/flip-flop block SET input configuration

{
"source": "none",
"debounce": false,
"invert": false

}

ioMappingTrigger
Type: Dictionary

Get: true
Set: true
Notifies: true

Recording trigger signal configuration

{
"source": "io1",
"debounce": true,
"invert": true

}

ioOutputStatus
36

JavaScript

JavaScript

Type: Dictionary

Get: true
Set: false
Notifies: false

The output signals from the IO block and their current values.

{
"gate": false,
"delay": false,
"start": false,
"comb": false,
"shutter": false,
"toggle": false,
"stop": false,
"io1": false,
"io2": false

}

ioSourceStatus
Type: Dictionary

Get: true
Set: false
Notifies: false

The available IO signals and their current values.

{
"io3": false,
"nextSeg": false,
"delay": false,
"timingIo": false,
"dispFrame": false,
"alwaysHigh": true,
"comb": false,
"none": false,
"shutter": true,
"toggle": false,
"endRec": false,
"io1": false,

37

JavaScript

JavaScript

"recording": false,
"software": false,
"startRec": false,
"io2": false

}

ioStatusSourceIo1
Type: Boolean

Get: true
Set: false
Notifies: false

The current logic level seen on the IO input 1 (BNC jack).

false

ioStatusSourceIo2
Type: Boolean

Get: true
Set: false
Notifies: false

The current logic level seen on IO input 2 (green IO connector).

false

ioStatusSourceIo3
Type: Boolean

Get: true
Set: false
Notifies: false

The current logic level seen on IO input 3 (opto-isolated input).

38

JavaScript

JavaScript

JavaScript

JavaScript

false

ioThresholdIo1
Type: Double

Get: true
Set: true
Notifies: true

Voltage threshold at which trigger input signal 1 should go high.

2.50271

ioThresholdIo2
Type: Double

Get: true
Set: true
Notifies: true

Voltage threshold at which trigger input signal 2 should go high.

2.50271

lastShutdownReason
Type: String

Get: true
Set: false
Notifies: false

The reason for the last shutdown that happened.

"97: PwrBtn, Software, PMIC Ack"

39

JavaScript

JavaScript

JavaScript

minFramePeriod
Type: Integer

Get: true
Set: false
Notifies: true

The minimum frame period, in nanoseconds, at the current resolution settings.

999893

miscScratchPad
Type: Dictionary

Get: true
Set: true
Notifies: true

A dictionary of arbitrary values that can be stored in the camera.

{
"empty": 1

}

networkHostname
Type: String

Get: true
Set: true
Notifies: false

Hostname to be used for dhcp requests and to be displayed on the command line.

chronos

overlayEnable

40

JavaScript

JavaScript

JavaScript

Type: Boolean

Get: true
Set: true
Notifies: true

Enabled the overlay text box when in playback mode

false

overlayFormat
Type: String

Get: true
Set: true
Notifies: true

Format string for the overlay text box

"%.6h/%.6z Sg=%g/%i T=%.8Ss"

overlayPosition
Type: String

Get: true
Set: true
Notifies: true

Location in the video stream to position the overlay textbox. This can take the values "top", "bottom" or a
position of the form HPOSxVPOS.

"bottom"

playbackLength
Type: Integer

41

JavaScript

JavaScript

JavaScript

Get: true
Set: true
Notifies: true

The number of frames which should be replayed when in playback mode.

11032

playbackPosition
Type: Integer

Get: true
Set: true
Notifies: false

The current frame being displayed when the camera is in playback mode.

0

playbackRate
Type: Integer

Get: true
Set: true
Notifies: true

The rate at which video is being replayed when in playback mode.

0

playbackStart
Type: Integer

Get: true
Set: true
Notifies: true

42

JavaScript

JavaScript

JavaScript

The starting frame from which video should be replayed when in playback mode.

0

pmicFirmwareVersion
Type: String

Get: true
Set: false
Notifies: false

The Power Management Integrated Circuit’s firmware version.

"11"

powerOffWhenMainsLost
Type: Boolean

Get: true
Set: true
Notifies: true

True if the camera should power itself down when disconnected frommains power.

false

powerOnWhenMainsConnected
Type: Boolean

Get: true
Set: true
Notifies: true

True if the camera should power itself on when plugged into mains power.

43

JavaScript

JavaScript

JavaScript

false

recMaxFrames
Type: Integer

Get: true
Set: true
Notifies: true

Limit on the maximum number of frames for the recording sequencer to use.

11038

recMode
Type: String

Get: true
Set: true
Notifies: true

Mode in which the recording sequencer stores frames into video memory.

● normal: Frames are saved continuously into a ring buffer of up to recMaxFrames in length until
the recording is terminated by the recording end trigger.

● burst: Each rising edge of the recording trigger starts a new segment in video memory, with
frames being saved for as long as the recording trigger is active.

● segmented: Up to recMaxFrames of video memory is divided into recSegments number of ring
buffers. The camera saves video into one ring buffer at a time, switching to the next ring buffer at
each recording trigger.

"normal"

recPreBurst
Type: Integer

44

JavaScript

JavaScript

JavaScript

Get: true
Set: true
Notifies: true

The number of frames leading up to the trigger rising edge to save when in 'burst' recording mode.

1

recSegments
Type: Integer

Get: true
Set: true
Notifies: true

The number of segments used by the recording sequencer when in 'segmented' recording mode.

5

recTrigDelay
Type: Integer

Get: true
Set: true
Notifies: true

The number of frames to delay the trigger rising edge in 'normal' and 'segmented' recording modes.

0

resolution
Type: Dictionary

Get: true
Set: true
Notifies: true

45

JavaScript

JavaScript

JavaScript

Resolution geometry at which the image sensor should capture frames.

{
"bitDepth": 12,
"vOffset": 0,
"vRes": 1080,
"minFrameTime": 0.000999893,
"hOffset": 0,
"hRes": 1920,
"vDarkRows": 0

}

sensorBitDepth
Type: Integer

Get: true
Set: false
Notifies: false

Number of bits per pixel sampled by the image sensor.

12

sensorColorPattern
Type: String

Get: true
Set: false
Notifies: false

String describing the color filter array pattern of the image sensor.

"GRBG"

sensorHIncrement
Type: Integer

46

JavaScript

JavaScript

JavaScript

Get: true
Set: false
Notifies: false

Minimum step size allowed, in pixels, for changes in the horizontal resolution of the image sensor.

32

sensorHMax
Type: Integer

Get: true
Set: false
Notifies: false

Maximum horizontal resolution, in pixels, of the active area of the image sensor.

1920

sensorHMin
Type: Integer

Get: true
Set: false
Notifies: false

Minimum horizontal resolution, in pixels, of the active area of the image sensor.

640

sensorIso
Type: Integer

Get: true
Set: false
Notifies: false

47

JavaScript

JavaScript

JavaScript

ISO number of the image sensor with nominal (0dB) gain applied.

580

sensorMaxGain
Type: Integer

Get: true
Set: false
Notifies: false

Maximum gain of the image sensor as a linear multiplier of the sensorISO.

16

sensorName
Type: String

Get: true
Set: false
Notifies: false

Descriptive name of the image sensor.

"LUX2100"

sensorPixelRate
Type: Double

Get: true
Set: false
Notifies: false

Approximate throughput of the image sensor in pixels per second.

48

JavaScript

JavaScript

JavaScript

JavaScript

2073920000

sensorTemperature
Type: Double

Get: true
Set: false
Notifies: false

The temperature, in degrees Celsius, measured near the image sensor.

45

sensorVDark
Type: Integer

Get: true
Set: false
Notifies: false

Maximum vertical resolution, in pixels, of the optical black regions of the sensor.

8

sensorVIncrement
Type: Integer

Get: true
Set: false
Notifies: false

Minimum step size allowed, in pixels, for changes in the vertical resolution of the image sensor.

2

49

JavaScript

JavaScript

JavaScript

sensorVMax
Type: Integer

Get: true
Set: false
Notifies: false

Maximum vertical resolution, in pixels, of the active area of the image sensor.

1080

sensorVMin
Type: Integer

Get: true
Set: false
Notifies: false

Minimum vertical resolution, in pixels, of the active area of the image sensor.

96

shippingMode
Type: Boolean

Get: true
Set: true
Notifies: true

True when the camera is configured for shipping mode

false

shutterAngle
Type: Double

50

JavaScript

JavaScript

Get: true
Set: true
Notifies: false

The angle in degrees for which frames are being exposed relative to the frame time.

180.365

state
Type: String

Get: true
Set: false
Notifies: true

The current operating state of the camera.

● analogCal: The camera is currently performing analog calibration of the image sensor.

● blackCal: The camera is currently calibrating using a dark reference image.

● idle: The camera is powered up and operating, but not doing anything.

● recording: The camera is running a recording program to save images into video memory.

● reset: The camera is in the process of resetting the FPGA and image sensor.

"idle"

systemTemperature
Type: Double

Get: true
Set: false
Notifies: false

The temperature, in degrees Celsius, measured near the main processor.

51

JavaScript

JavaScript

JavaScript

47.3

totalFrames
Type: Integer

Get: true
Set: false
Notifies: false

Total number of frames of recorded video that have been saved into memory.

11032

totalSegments
Type: Integer

Get: true
Set: false
Notifies: false

Total number of video segments that have been saved into memory.

0

videoConfig
Type: Dictionary

Get: true
Set: false
Notifies: false

Dictionary of parameters saved persistently by the video system.

52

JavaScript

JavaScript

JavaScript

{
"overlayFormat": "%.6h/%.6z Sg=%g/%i T=%.8Ss",
"overlayEnable": false,
"overlayPosition": "bottom",
"focusPeakingLevel": 0,
"zebraLevel": 0,
"focusPeakingColor": "cyan"

}

videoSegments
Type: Dictionary

Get: true
Set: false
Notifies: false

Array of video segments, describing the size and metadata that has been recorded.

[]

videoState
Type: String

Get: true
Set: false
Notifies: true

Current state of the video system.

● live
● filesave
● play
● paused

"live"

53

JavaScript

JavaScript

JavaScript

videoZoom
Type: Double

Get: true
Set: true
Notifies: true

Video scaling ratio to apply to the video stream (1.0 = fit to screen)

1

wbColor
Type: Array of Doubles

Get: true
Set: true
Notifies: true

The Red, Green and Blue gain coefficients to achieve white balance.

[
1.25806,
1,
1.10376

]

wbCustomColor
Type: Array of Doubles

Get: true
Set: true
Notifies: true

The Red, Green and Blue gain coefficients last computed by startWhiteBalance().

[
1.25822,

54

JavaScript

JavaScript

1,
1.10377

]

wbTemperature
Type: Integer

Get: true
Set: true
Notifies: true

Color temperature, in degrees Kelvin, to use for white balance.

0

zebraLevel
Type: Double

Get: true
Set: true
Notifies: true

Pixel threshold at which zebra striping is enabled. Values close to 0.0 only trigger zebra stripes near
saturation, and values near 1.0 would enable zebra stripes even when the image is black.

0

55

